WDMDRY

WDM Drivers
for PCI Data Acquisition Cards

User Manual

WDMDRYV

User Manual

Document Part N° 0127-1033
Document Reference 01271033.doc
Document Issue Level 2.0

Manual covers Drivers identified v6.0

All rights reserved. No part of this publication may be reproduced, stored in any retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopied, recorded or otherwise, without the prior permission, in writing, from the publisher. For
permission in the UK contact your supplier.

Information offered in this manual is correct at the time of printing. The supplier accepts no responsibility for any inaccuracies. This
information is subject to change without notice.

All trademarks and registered names acknowledged.

Amendment History

Issue Issue Author Amendment Details
Level Date
1.0 01/08/2000 AJP First Release
2.0 15/09/2005 MJF Added XP references to supported operating systems.
Correction to 3.4.5 Using the ports,
- Handle for writing ports is nOutoutHandle.
Correction to BCTReadBlockAin function description,
- change PCIADC_AIN_AUTOSEL to PCIADC_AIN_MULTI_CHANNEL
Add text relating to support for VB.NET header.
3.0 30/01/2007 DPR Add text relating to PCI Relay card

Contents

OUTLINE DESCRIPTION ...ttt et sttt et et s s st eneene s saeesaeesneenneeas 1
1.0 IMPORTANT INFORMATIONccuiiuiiuiiiiiiiiiiiii ittt sttt s es e s n s 2
2.0 INSTALLATION.....utiuiiiiiiiitiitiit ittt st s b e s s e st sb e sa e b e et aesa b saseneeneennennn 3
2.1 FILES INSTALLED......cooiiiiiitiitiitiiiicieict sttt st st st sa b s 5
2.2 SAMPLE APPLICATIONScciitiiiiitiiiiiiiiiete ittt st st b e s b s e a e sa b sa s en s 6
2.2.1 PCI-PIO SAMPLE PFOGTANMLSc..eeueeiieiiaeieiieieeeieete ettt sttt et sttt sreeaeene e 7
2.2.2 PCI-DIO SAMPLE PTOGTAMS ..ottt ettt ettt s sreeae e 8
2.2.3 PCI-ADC SAMPLE PrOGFAMISc.eeeneeeiiaeieiieiieieeieete ettt ettt e ae e 9
2.2.4 PCI-WDT SAMPLE PFOGIAMIS.........ccuevueeiiaiieiieiieeeeieeeteeeteete e sttt et n e eene e saees 10
2.2.5 PCI-RLY SQMPLE PFOGIAIMSocouueieeiieiieieeieeeieieeeieeete ettt et s sttt eene e saees 10
2.2.6 Miscellaneous SAMPLE PrOGFANMLScocuueevuiiniiiiie ettt ettt ettt ettt sat e et e et e s bt e sbeessbeeeaee s 13
3.0 USING THIS PRODUCToviiiiiiiiiiiiiiicie ettt s 14
3.1 USING THE DRIVERS FROM C OR CH...ooiiiiiiiiiiiiiiiiiii e 14
3.1.1 The BLUECHIP.H ReAder filecccccoooeiuiiiiiniiiniiiiiiieiieieee ettt 14
3.1.2 Compiling And LiRKITG..........cc.cccoovuiriiiiiiiiiiieiei ettt ettt ettt 14
3.2 USING THE DRIVERS FROM VISUAL BASICcc.cooiiiiiiiiiiiiiiciicicicic e 15
3.2.1 VISUAL BASIC ...ttt ettt e s et e s e st e et e st e e s eesabeesabeesans 15
3.2.2 VBUNEL ..ottt ettt ae ettt e naees 15
3.3 IDENTIFYING BOARDSccuiiiiiiiiiiiiiiiiiiicicce e e 15
3.4 APPLICATION DEVELOPMENT........ccciiiiiiiitiiiiiiiiiiiiie sttt s 16
3.4.1 Determine the board IDs and handles required.cccoccouveevieviniiniinienieiiecreeceneene 16
3.4.2 Initialise the handles and board ID STFUCTUTE.ccccueovueiicuiinieiiieesieeeee ettt aee s 18
3.4.3 Initialise the port direCtions in the 8255cueovuiiiieiiiiiiieeeit ettt 18
3.4.4 Assign each allocated handle 10 G POFL..............c.cccoceeeuieciiiiuiiiiniiiiieiece e 19
3:4.5 USING THE POTLS..c...ceeeeeiieieeteeeeeeee ettt et et st sttt ene e saees 19
3.4.6 Closing all 0pen RANAIESc..ccceevuieiuiniiiniiiniiiiieieeceee ettt 20
3.5 ASYNCHRONOUS OPERATIONcciiiiiiiiiiiiniiiiitiiiete ettt n e s en st s 21
3.6 USING THE COUNTER TIMERSccoooiiiiiiiiiiiiiiiiiiiiiiieie ettt s 21
BT PACING. ..ottt et s 22
3.8 USING DIGITAL INPUT AND OUTPUTcoouiiuiiiiiiiiiiiiiiiie ittt s 25
3.8.1 POFES A GIA Bttt e ettt et ettt s b e e bttt eebee s 25
3.8.2 SPLIE POTE C .. ettt 25
3.8.3 Isolated Digital OUIPULccccouerieiuieiiieiieieeeeeeeete ettt ettt sttt 25
3.9 WATCHDOG TIMERcoouiiiiiiiiiiiiiiiiiiiiiic ettt s 26
4.0 DRIVER APT FUNCTIONSocuiiiiiiiiiiiiiiiiiii ettt s 27
A1 FUNCHON OVEFVIEW ...ttt ettt ettt ettt ettt ettt ettt s bt e bt e e s bt e e sbte e sbte e bt e e bt e ebeesbbeebeesseeeseen 27
4.2 FUNCHON DESCTIPHIONSeeenieeeiieiiiieeeiie ettt ettt ettt ettt s bbbt e s bt e bt e sbte s sbt e e bt e s bt e sbteebeesbeeeneen 28
4.2.1 Management FUNCHIOMScoccueevueiiueisitisieeeitt ettt ettt ettt ettt ettt e sbt e e bt e s btesbeesbeeenee s 28
4.2.2 DIGIIAL FUICTIOMS .ottt ettt ettt bt e at e e bt e e at e e sbte s bt e s bt e e bt e s bt e sbeesbaeeneen 34
4.2.3 ANGIOGUE FUNCIIONSccoeeeieieiiiiieiiete ettt et et sttt e saees 39
4.2.4 COUNLEE FURCTIOMS ...ttt ettt ettt ettt e bt e et essbt e s sbe e e bt e s bt e s bt e sbeesbeeebee s 42
42,5 PACEE FUNCHIOMS ..ottt et ettt ettt e bbbt sttt e bt e ettt s bt e ebaesbaeebee s 43
4.2.6 Watchdog tIMET fUNCHIOMScc..coeeiuieiuiiiiiiieeeeeeeteeete ettt et sttt et 45
5.0 EVENTLOG MESSAGEScouiiuiiuiiiiiiiiiiiitiitcicei ettt st s 47
5.1 BERROR CODES.....ccuiiiiiiiiiiiiiiitiiieieiete sttt st s b et sa b 48
5.2 BCTGETLASTERROR......ccoiiuiiiiiiiiiiiiiiii ittt et s 56
A.0 LIBRARY DEFINED TYPES.....c.coiiiiiiiiiiiiiiiiiiiiiicietete st s 57
A.1 Platform Independent DAt TYPES.............ccccocueeuiniiniesuiieiieiieeeeieeeteeete et 57
A2 ERUMETATEA TYPES ...neeeiieiieeeeeeeee ettt ettt ettt sttt st e ettt s bt e st e s baesbeesbaeebee s 57
A3 SITUCHUFE DEJIIITIONS. ...ttt ettt s st e a e e s e s e saeeneeas 58

Blue Chip Technology Ltd. 01271033V3.doc

Outline Description

OUTLINE DESCRIPTION

The Windows WDM driver for PCI Data Acquisition Cards (“the drivers”) provide a simple
programming interface to the supported range of PCI data acquisition cards for application
programmers using either Windows 98, Windows 98SE, Windows Millennium Edition,
Windows 2000 or Windows XP as their operating system.

The drivers provide the user with an application programming interface (API) that gives
access to the most commonly used features of the PCI data acquisition boards. Not all of the
hardware functionality of the PCI data acquisition cards is supported by the driver.

If you require additional functionality, contact your supplier to see if a later version of driver
is available that has the functionality that you require.

These drivers have been written to maintain backward compatibility with the API of the
Windows NT drivers for the PCI range of data acquisition cards. As such applications
written for Windows NT v4.0 should continue to execute correctly on any of the platforms
supported by the WDM drivers. There is a possibility that in some cases in order to make
these applications work correctly that they need to be recompiled under the new operating
system.

Where new functionality has been added to correct problems or to simplify the programming
model exposed by the API these new functions should be used when developing new
applications.

Blue Chip Technology Ltd. 01271033V3.doc Page 1

Important Information

1.0 IMPORTANT INFORMATION

These drivers remain the property of the supplier and are provided under the non-exclusive
license agreement printed on the envelope in which they were delivered.

The most up to date information can be found in the READ.ME file on the installation CD.

If the CD that has been supplied is faulty then please contact your supplier for a replacement.

Page 2 01271033V3.doc Blue Chip Technology Ltd.

Installation

2.0 INSTALLATION

There are two scenarios under which the drivers could be installed. Firstly, if the PCI card
was found in the system when the operating system was installed then the PCI data
acquisition cards will be found listed as a “PCI Device” under “Other devices” in the device
manager. Secondly, if the data acquisition cards have been added after the operating system
was installed then card would be auto-detected and the operating system will prompt for a
driver to be installed.

If the PCI data acquisition cards are shown in device manager as “PCI Device” under “Other
devices” then right click on the device and choose “properties” from the menu. Click on the
driver tab and click the “Update driver” button. Allow Windows to search for a driver
automatically and ensure that the “CD-ROM” box is ticked. Windows will go and search for
the .INF file and return with a location that it has found it from. Choose finish and allow
Windows to copy the driver files that are required.

If the cards have been added after the operating system installation then on the reboot after
installing the PCI data acquisition card, Windows will detect that new hardware was installed
and will prompt for the driver CD. Insert the driver CD in an appropriate drive and specifty
that windows should “Install the software automatically”. The Windows driver installation
procedure will copy the driver files to the appropriate directories on the Windows system.

During the installation of device drivers for data acquisition cards, Windows will detect
further low level hardware for each card found, and will install drivers for each of these low
level devices. These low level devices appear in device manager under “BCT Bus Low Level
Devices”. An example of how device manager will find and display such devices for a
PCI_PIO card can be seen below.

=

File Action Mjew Help

= [FES 2 A=

EI-- CEM-UGHGEMY IHQF =
Eﬂ BCT Bus Low Lewvel Devices

& - ¥PCI PIC, Board 0, 5254-0, Pork 0
-8 PCI_PIO, Board 0, 5254-0, Port 1
-8 PCI_PIO, Board 0, 5254-0, Port 2
-8 PCI_PIO, Board 0, 8255-0, Port &
-8 PCI_PIO, Board 0, 5255-0, Port B
-8 PCI_PIO, Board 0, 8255-0, Port C
-8 PCI_PIO, Board 0, 8255-1, Port &
-8 PCI_PIO, Board 0, 5255-1, Port B
i -8 PCI_PIO, Board 0, 8255-1, Port C
|'£| _é Camputer

[+ Disk drives

Bl 3‘ Display adapters
- Floooy disk controllers ll

-1

Blue Chip Technology Ltd. 01271033V3.doc Page 3

Installation

The specific low level devices found while installing PCI data acquisition cards is card
specific. The table below shows what hardware will be detected for each type of PCI data
acquisition card supported by the driver.

PCI Card Low Level Devices Installed
PCI-PIO 8254-0, Port 0
8254-0, Port 1
8254-0, Port 2
8255-0, Port A
8255-0, Port B
8255-0, Port C
8255-1, Port A
8255-1, Port B
8255-1, Port C
PCI-DIO 8254-0, Port 0
8254-0, Port 1
8254-0, Port 2
ISODIG-0, Port O
ISODIG-O0, Port 1
ISODIG-O0, Port 2
PCI-RLY 8254-0, Port 0
8254-0, Port 1
8254-0, Port 2
RLY-0, Port O
RLY-0, Port 1
RLY-0, Port 2
PCI-ADC 8254-0, Port 0
8254-0, Port 1
8254-0, Port 2
AIN-0, Port O
AOUT-0, port 0
AOUT-O0, port 1
AOUT-0, port 2
AOUT-0, port 3
PCI-WDT WDT-0, Port 0

When installing under Windows 2000 use is made of a co-installer that provides more
meaningful names to the devices found under the device manager. Unfortunately at present
Windows 98 and Millennium Edition make no use of this co-installer and as such the
information shown in the device manager is limited.

NOTE: When altering the Blue Chip Technology card collection installed within a
computer (adding cards, removing cards, changing PCI slots), it is recommended that prior
to change all Blue Chip technology data acquisition cards are uninstalled in device
manager. It is also recommended that after device manager has detected and installed new
devices, a system restart be performed.

Page 4 01271033V3.doc Blue Chip Technology Ltd.

Installation

2.1 FILES INSTALLED

The following files will be copied to the hard disk drive during the installation of the
Windows WDM driver:

BCTENUM.SYS

BCT_8254.SYS

BCT_8255.SYS

BCT_AIN.SYS
BCT_AOUT.SYS

BCT_ISO.SYS
BCT_WDT.SYS

BCT_RLY.SYS

BCTCOINS.DLL

BCDLL32.DLL

BCTENUM.INF
BCTDEV.INF

This is the Blue Chip Technology WDM bus class driver for the PCI
data acquisition cards

The driver for 8254 counter timer devices found on the PCI data
acquisition cards

The driver for 8255 programmable IO devices on the PCI data
acquisition cards.

The driver for analogue input functions on the PCI-ADC.
The driver for analogue output functions on the PCI-ADC.

The driver for isolated digital IO functions on the PCI-DIO.
The driver for the PCI-WDT watchdog card.

The driver for the PCI-RLY relay card.
The co-installer library used during installation on Windows 2000

The API dynamic link library used to access functions on the PCI data
acquisition cards.

The .INF files used by the operating system to install the appropriate
drivers and library files.

NOTE: Even if an area of functionality is not present on the PCI data acquisition card
installed in the system then all of the .SYS driver files are installed i.e. if only a PCI-PIO is
installed in the system that contains only 8254 and 8255 devices the driver files
BCT_AOUT.SYS,
BCT _WDT.SYS will also be installed.

BCT_AIN.SYS,

BCT_ISO.SYS, BCT_RLY.SYS and

Blue Chip Technology Ltd.

01271033V3.doc Page 5

Installation

2.2 SAMPLE APPLICATIONS

The installation CD that contains the driver files also contains a number of sample
applications that can be used to test out the functionality of the PCI data acquisition cards that
have been installed in your system. These samples can also be used as the basis for functions
that are implemented within your own application for calling the functions within the API
DLL.

The sample programs are written using Visual Basic, VB.Net and Visual C++. The
applications written using Visual C++ have been developed as console mode applications to
remove the complexity of the code that is associated with the development of Windows
applications using C or C++.

Each of the applications check the error codes returned from the API functions and display
the results on the screen, however, in order to not over complicate the code some checking of
data sizes is removed. The actions taken on finding an error returned from a DLL function
have also been removed in an effort to make the sample applications appear simple to read.

It is imperative when writing your own applications that all error checking of parameters is
performed and the correct action is taken as a result of error codes being returned from the
API functions. This is especially important if the data acquisition cards and WDM drivers are
being used in a control system where there is a potential danger to human life.

The sample programs perform the same functions in Visual Basic,VB.Net, and C++. The
Visual Basic programs are controlled using buttons and text boxes on screen to get input and
to display values. The console mode C applications use menus to get the information that
they require and display the output on the screen using calls to printf().

Page 6 01271033V3.doc Blue Chip Technology Ltd.

Installation

2.2.1 PCI-PIO sample programs

There are two test programs for the PCI-PIO card. The first (PIOTEST) requires a loopback
plug with the following connections in order to allow output values to be read back using the
same card.

PIN1-PINO PIN5-PIN 13 | PIN17-PIN25 | PIN 21 — PIN 29
PIN2-PIN10 |PIN6-PIN 14 |PIN18-PIN26 | PIN 22 —PIN 30
PIN3-PIN11 |PIN7-PIN15 |PIN19-PIN27 | PIN 23 —PIN 31
PIN4-PIN12 | PIN8—-PIN 16 | PIN 20-PIN 28 | PIN 24 — PIN 32

These pins connections relate to the following ports being connected.

PORT 1
PIO 8255 Device 0 Port A
PIO 8255 Device 0 Port C

PORT 2
PIO 8255 Device 0 Port B
PIO 8255 Device 1 Port A

Having set up the relevant handles and board ID structures for the PCI-PIO as described in
section 3.4 it is possible to perform demand driven IO which involves writing an 8 bit value
out of PIO 8255 Device 0 Port A and reading a value back from PIO 8255 Device 0 Port B.
If the loopback connector is attached the value written out of PIO 8255 Device 0 Port A
should match the value read back on port PIO 8255 Device O Port B.

Pacer driven IO uses a preloaded buffer to output values to PIO 8255 Device 1 Port A at
30ms intervals using the control of the 8254 pacer device on the PCI-PIO board. The
program then sits in a loop reading back the value that appears at the input of PIO 8255
Device 0 Port C and displays it on screen. This should show an incrementing count from
0x00 to OxFF, which then resets back to 0 and starts to count again.

The second test program for the PCI-PIO (PIOCOUNT) wuses the function
BCTProgramCounter to count down the number of input pulses from the second external
input to counter 0. In order to see this test working an input signal (square wave) from a
signal generator needs to be input to pin 17 of the connector on the PCI-PIO and a ground
connected from the signal generator to pin 50 of the PCI-PIO connector.

The on screen display will show the counter count down from Oxffff to 0 and when 0 is
reached the counter will reset to Oxffff and start to count down again.

Blue Chip Technology Ltd. 01271033V3.doc Page 7

Installation

2.2.2 PCI-DIO sample programs

There are two test programs for the PCI-DIO card. The first (DIOTEST) performs demand
driven 16 bit read and write operations using the functions BCTReadPortl6 and
BCTWritePort16.

This test requires a loopback plug with the following connections to allow output values to be
read back using the same card. This loopback connector also includes LED’s that can be used
to monitor the values being driven on the output ports.

DISK DRIVE
CONNECTOR

‘M—H——@M

“9-%2)—“—@35

20@—%——@35

2*-)—3;!—@37

zz.)—};—(,aa

23-)—};—@39

ZH‘H——@ 40

259—};—@41

25-32)—“—@42

279—%’—@43

28.3{)‘,”_‘@44

29.%)‘,“_‘(.45

30-32)—“—@45

31-)—};!—@47

3“—“——@45

33-9—\?;—@49

50W D-TYPE

The second test program for the PCI-DIO (DIOCOUNT) uses the function
BCTProgramCounter to count down the number of input pulses from the first external input
to counter 0. In order to see this test working an input signal (square wave) from a signal
generator needs to be input to pin 1 of the connector on the PCI-DIO and a ground connected
from the signal generator to pin 18 of the PCI-DIO connector. In order for this test to work,

Page 8 01271033V3.doc Blue Chip Technology Ltd.

Installation

sufficient voltage needs to be supplied to the input pins to register the changes in the Opto-
isolator.

The on screen display will show the counter count down from Oxffff to 0 and when 0 is
reached the counter will reset to Oxffff and start to count down again.

2.2.3 PCI-ADC sample programs

There are two test programs for the PCI-ADC card. The first (ADCTEST) performs a test of
each of the functional components of the PCI-ADC data acquisition cards, i.e. digital 10,
analogue output, analogue input, auto calibration using direct IO calls and under pacer

control.

In order to use the test program a test connector with the following connections is required:

PIN 10-PIN 26 | PIN 13-PIN29 | PIN 16 — PIN 32 | PIN 44 — PIN 48
PIN 11 —PIN 27 | PIN 14 -PIN 30 | PIN 17— PIN 33 | PIN 45 — PIN 49
PIN 12 -PIN 28 | PIN 15-PIN 31 | PIN43—-PIN 47 | PIN 46 — PIN 50
Analogue Input PIN 1 +ve PIN 22 —ve

Analogue Output | PIN 24 +ve PIN 8 —ve

The first part of the test performs demand driven IO activities on all three ports of the 8255
PIO device. Port A is looped back into port B and is used for 8 bit output from port A read
back via port B. Port C has the upper 4 bits looped back to the lower four bits to show the
use of a split port C. In this sample application the upper nibble is set for output and the
lower nibble is used for the input from the looped back signals.

This sample program includes an analogue output test that drives a voltage out between —10V
and +10V which can be monitored on pins 24 and 8 using a voltmeter. The analogue input
test shows how the function BCTReadBlockAin test works and reads 500 samples over a 5
second period and displays the result on the screen. In the case of the Visual Basic version of
ADCTEST this is done in the form of a graph to show a representation of the waveform, in
the C example the first 16 values read back are displayed on the screen.

In the final option of the ADCTEST sample application the auto calibrate function of the PCI-
ADC is shown to determine the mean zero and mean fsd of the PCI-ADC card that can then
be used for scaling and correcting the values obtained when capturing analogue input data.

The second test program for the PCI-ADC (ADCCOUNT) uses the function
BCTProgramCounter to count down the number of input pulses from the first external input
to counter 1. In order to see this test working an input signal (square wave) from a signal
generator needs to be input to pin 50 of the connector on the PCI-ADC and a ground
connected from the signal generator to pin 9 of the PCI-ADC connector.

Blue Chip Technology Ltd. 01271033V3.doc Page 9

Installation

The on screen display will show the counter count down from Oxffff to O and when O is
reached the counter will reset to Oxffff and start to count down again.

2.2.4 PCI-WDT sample programs

The sample application for the PCI-WDT performs two operations on the watchdog card.
The first monitors the external inputs and displays the results on the screen. The second runs
in a loop to keep the watchdog timeout refreshed. If either part of the sample application
returns an error then the watchdog card is tripped. By default this is shown by illuminating
the LED on the card.

2.2.5 PCI-RLY sample programs

There are two test programs for the PCI-RLY card. The first (RLYTEST) requires a loop
back plug to allow output values to be read back using the same card. As the relay card has an
8 bit output and 16 bit input two loopbacks are required to fully test the inputs of a card. In
the first diagram shown on page 11 the outputs are linked to the lower 8 inputs (bits 0-7), and
in the second diagram on page 12 the outputs are linked to the upper 8 inputs (bits 8-15).

The RLYTEST program allows data to be written and read manually by entering values in at
the console and reading back the values. The test program asks the user which loop back
connector is being used for the test and automatically adjusts the 16 bit input accordingly to
ascertain if the value read matches what was written. The second test in RLYTEST
demonstrates pacer driven (Interrupt driven) 10.

Pacer driven 10 uses a preloaded buffer to output values to an output port at 30ms intervals
using the control of the 8254 pacer device on the PCI-RLY board. The program then sits in a
loop reading back the value that appears at the input of the card and displays it on screen.
This should show values alternating between 0x55 and OxAA.

The second test program for the PCI-RLY (RLYCOUNT) uses the function
BCTProgramCounter to count down the number of input pulses from the first external input
to counter 0. In order to see this test working an input signal (square wave) from a signal
generator needs to be input to pin 2 of the connector on the PCI-RLY and a ground connected
from the signal generator to pin 1 of the PCI-RLY connector. In order for this test to work
correctly, sufficient voltage needs to be supplied to the input pins in order for the isolated
input to register the changes in the signal level.

The on screen display will show the counter count down from Oxffff to O and when O is
reached the counter will reset to Oxffff and start to count down again.

Page 10 01271033V3.doc Blue Chip Technology Ltd.

Installation

PCI-RLY LOOPBACK (Low byte)
PSU
ov
Indicator LEDs are optional.
Must be low current (2.5 mA)
PCI-RLY INPUTS
777777777777 1 1 >| 2° >| a0
PCI-RLY OUTPUTS 15 ’@IM
~ 7
FUA 12 %
Dl 35 Dl QD) @
IN2
2 34
E'-ZA 4 %
19
18
FBA 30 §|—°—I>|—GD All inputs are limited to approx 2.5mA
4 ’@M by the current-limiting diodes
- 31 .
FMA 14 #
37
B %
FLSA 48 Y
Dl 45 Dl QO
-~ ’@ING o o
T # Circuit checks low 8 bits inputs
RL6A 32 7
NT—M’@
IN7
17 .
FUA 16 4
39
e B
FLBA 23

40

2

42

26

@

4

NO CONNECTS ~--=~~=~---

Blue Chip Technology Ltd. 01271033V3.doc Page 11

Installation

PCI-RLY LOOPBACK (High byte)

[PCI-RLY INPUTS

NO CONNECTS —--------==-=-------
w

|36
+12V |
s -
ov o

e

7 w0
PCI-RLY OUTPUTS I2g IN9
25

22
FUA 12 ’\;/l
1 s ’@INW
> 7
FLZA 46 % Dl_@g) All inputs are limited to approx 2.5mA
e ’@mn by the current-limiting diodes
’—A\—lﬁ 47 p 10
RL3A 30 o
31 e l@mz
F\—Aﬁ 7
RL4A 14 !(l
15 o l@wm
FLSA 4 9 Circuit checks high 8 bits inputs
48 4
. L1743 D @’@WM
T P)
RL6A 32 &
. L1 27 D @’@IMS
26
RL7A 16 ﬁ

w0
50 IN16
~—

Indicator LEDs are optional.
Must be low current (2.5mA)

Page 12 01271033V3.doc Blue Chip Technology Ltd.

Installation

2.2.6 Miscellaneous sample programs

A number of the management functions are not specific to any given board and are used for
determining board serial numbers. The sample application BOARDNUM uses both
supported methods of determining the information relating to the boards in the system.

The first option takes a serial number and looks through the list of boards in the system and
returns the board type and the index number of that board if a board of the serial number
specified can be found in the system. If a board with the serial number specified can not be
found in the system then an error is returned.

The second option that can be selected gives a display of all the boards in the system by
calling BCTEnumerateBoards and displays the board type, its serial number and its index
number within the driver.

The final test program that is contained on the diskette, in C form only, is TESTDLL. This is
the program that was used extensively during the driver development process. This program
contains calls to all of the functions contained within the driver, however it has specific
requirements for loopback plugs in order for the tests to work. It is included here for
reference for developers to confirm the order that functions are to be called and the parameter
types that need to be passed.

Blue Chip Technology Ltd. 01271033V3.doc Page 13

Using the Product

3.0

USING THIS PRODUCT

To use the drivers and the associated library files, you will require some experience of
developing Windows applications. Experienced programmers may choose to develop their
applications using C or C++. Alternatively, the DLL and the underlying driver may also be
called from development tools such as Visual Basic, Delphi, C++ Builder, etc. In any of
these cases you will need to possess and be familiar with the appropriate software
development kit.

3.1

USING THE DRIVERS FROM C OR C++

3.1.1 The BLUECHIP.H header file

At the top of any source module, which includes a call to one of the functions,
provided by the DLL you should include the header file BLUECHIP.H

The header file contains:

Function prototypes for each function in the library. This is used by the ‘C’ compiler
for parameter checking when a library function is called, and ensures that parameters
of an incorrect type are not passed into the library.

Symbolic names are used to identify each PCI board type supported, along with driver
specific structures and error codes. Use these names when making calls to the library
and checking error codes returned from library functions. This is done by
BLUECHIP.H including BCTYPES.H, which will appear in the external
dependencies list after the first compilation of the application.

3.1.2 Compiling and Linking

Once all modules have been coded and compile without errors or warnings, they must
be linked with the correct libraries to form the finished executable file. In order for
the application to compile correctly the following standard include statements are
required as a minimum:

#include <windows.h>
#include <winioctl.h>
#include <time.h>

The BCDLL32.DLL is supplied with an import library, BCDLL32.LIB. Although the
import library does not contain the actual library functions, it does contain information
that will allow each function included in the dynamic link library to be resolved when
called from a C program. The import library must therefore be specified as a library
module when linking the compiled modules of your C application.

Page 14

01271033V3.doc Blue Chip Technology Ltd.

Using the Product

The resulting Window’s executable file is then aware that these functions may be
found external to the executable file and must be 'linked in dynamically' at run-time.

The standard Windows libraries and DLLs also needed to build your application will
be supplied with your software development kit and should be described in the
documents supplied with that kit.

3.2 USING THE DRIVERS FROM VISUAL BASIC
3.2.1 Visual Basic

Accessing the library from a Visual BASIC program is straightforward. Simply include the
file BLUECHIP.BAS as one of your BASIC program's modules. You may include the module
by selecting the 'Add File..."' option on Visual BASIC's 'File' menu. Your own modules may
then call the library's functions.

BLUECHIP.BAS tells your program what functions are available and where they may be
found when called i.e. in the file BCDLL32.DLL. It also allows Visual BASIC to check the
parameters you pass to the functions and to provide any parameter type conversion required.

BLUECHIP.BAS also contains the symbolic names used for the Library's constants e.g. the
board types, the function return codes, status codes etc. These are described in later chapters

NOTE: The C header file defines two port direction constants as INPUT and OUTPUT for 8
bit port directions. These are both reserved words in Visual Basic so the constant
expressions in the BLUECHIP.BAS file are INPUT8 and OUTPUTS.

and should always be used in you own code to improve readability.
3.2.2 VB.Net

In the case of a VB.Net program, the library functions are accessed via the header file
“BLUECHIP.VB”. This module may be included within a developer’s program by selecting
the, ”Add Existing Item...” option under the ‘Project’ menu.

3.3 IDENTIFYING BOARDS

It is not possible to identify, in advance, the order in which a particular PCI Subsystem will
enumerate the PCI devices. This means that it is not possible to be sure that the physical order
of boards in a system is the same as the enumerated PCI order.

The effect of this is that when there is more than one board of a given type in the system it is
not possible to relate the device driver’s numbering scheme to the physical location of the
boards in the system. For any particular system, the order remains the same providing the PCI
subsystem (bridge chips and BIOS) remain unchanged.

Blue Chip Technology Ltd. 01271033V3.doc Page 15

Using the Product

To provide application developers with a method for uniquely identifying particular boards
the following mechanism has been provided:

1. Each of the PCI cards to which the drivers apply has a unique serial number programmed
into it and also attached to the board on the bar code label on the printed circuit board.
This serial number is used to positively identify one of the PCI cards. This serial number
is accessible by both the device driver and the user.

2. The DLL provides a function BCTGetBoardld that will open a Board by providing a board
type and a board number (zero based). In order to determine this board number an
additional function is provided, BCTFindBoardNo, that will search all the boards known
to the driver for one matching the serial number passed as a parameter to the function . The
function returns a suitable board identifier and number for use in a subsequent call to
BCTGetBoardld. If the serial number cannot be found or the driver is not loaded then an
error is returned.

In the Windows NT driver the function to determine the board number from the serial
number was BCTFindSerialNo. This function required that the high and low order 16bit
words were reversed prior to passing the serial number to the BCTFindSerialNo function.
This function has been retained in the WDM drivers or backwards compatibility with
applications written originally for the Windows NT driver but new applications should
use the BCTFindBoardNo function that does not require the high and low order words to
be reversed.

3.4 APPLICATION DEVELOPMENT

No matter which development language is being used the steps for developing an application
are the same:

Allocate and initialise handles for each device being used

Create and initialise a valid board ID structure

Initialise the directions of ports

Assign a handle to each port being used

Run required functions

Close all handles and release the board ID structure prior to terminating

A

If we take as an example writing an application that uses two of the ports on the PCI-PIO
(first 8255 ports A and B) one (port A) for input and the second (port B) for output we would
need to use the following process

3.4.1 Determine the board IDs and handles required.

As we are only using 1 PCI data acquisition card we will need only 1 board ID structure,
however as we plan to use two ports on the PCI-PIO we will need two handles. These can be
defined as:

// Define a board ID structure for the PCI_PIO. We don’t fill any of the data only

Page 16 01271033V3.doc Blue Chip Technology Ltd.

Using the Product

// reference it by name.
BCT_BOARD_ID nPCIPIOBoardID;

// Define two handles one for input and one for
BCT_HANDLE nOutputHandle;
BCT_HANDLE nInputHandle;

output

Blue Chip Technology Ltd. 01271033V3.doc

Page 17

Using the Product

In Visual Basic (and VB.Net) we define the same variables as:

‘ Define a board ID structure for the PCI_PIO. We don’t fill any of the data only
‘ reference it by name.
Dim nPCIPIOBoardID As BCT_BOARD_ID

‘ Define two handles one for input and one for output
Dim nOutputHandle As BCT_HANDLE
Dim nInputHandle As BCT_HANDLE

3.4.2 Initialise the handles and board ID structure

Now we have declared the variables required for the board ID and the handles we need to
make the appropriate calls to the driver to get the structures initialised. Each time we make a
call to the driver we should check the return code from the function and act as appropriate. In
this example the error checking is only shown for the first call to the driver but all calls
should be checked.

BCT_DWORD dwStatus;
char *szErrTxt;

// Get the board id structure completed by the driver
dwStatus = BCTGetBoardId (&nPCIPIOBoardID, PCI_PIO, O0);
if (dwStatus != BCT_OK)
{

BCTErr2Txt (dwStatus, szErrTxt);

printf (“Status: %s\n”, szErrTxt);

return (dwStatus) ;

}

// Get the handles initialised by the driver
dwStatus = BCTInitHandle (&nOutputHandle) ; // Check dwStatus returned
dwStatus = BCTInitHandle (&InputHandle) ; // Check dwStatus returned

In Visual Basic (and VB.Net) we define the same variables and function calls as:

Dim dwStatus as Long
Dim szErrTxt as String
szErrTxt = Space (120)

' Get the board id structure completed by the driver
dwStatus = BCTGetBoardId(nPCIPIOBoardID, PCI_PIO, O0)
If dwStatus <> BCT_OK Then

Call BCTErr2Txt (dwStatus, szErrTxt)
End If

' Get the handles initialised by the driver
dwStatus = BCTInitHandle (nOutputHandle) ' Check dwStatus returned
dwStatus = BCTInitHandle (InputHandle) ' Check dwStatus returned

3.4.3 Initialise the port directions in the 8255

We are using two ports on the first PIO (PIO 0) these are port A as input and port B as output.
If we were using both PIOs on the PCI-PIO we would need to call BCTInit8255Modes twice,
once for each PIO.

// Init the 8255 using the board ID structure declared and initialised.
// 0 is PIO 0, using MODE 0, port A is input, port B is output, port
// C is NOCARE as not used.

dwStatus = BCTInit8255Modes (&nPCIPIOBoardID, 0, MODE_O0, INPUT, OUTPUT, NOCARE);
// Check dwStatus returned

Page 18 01271033V3.doc Blue Chip Technology Ltd.

Using the Product

In Visual Basic (and VB.Net) we define the same function calls as:

‘' Init the 8255 using the board ID structure declared and initialised.
*'0 is PIO 0O, using MODE 0, port A is input, port B is output, port
* C is NOCARE as not used.

dwStatus = BCTInit8255Modes (nPCIPIOBoardID, 0, MODE_O0, INPUT8, OUTPUT8, NOCARE)
' Check dwStatus returned

3.4.4 Assign each allocated handle to a port

Now that an 8255 has been set up we can assign each of the handles to represent a specific
port within the device.

// nInputHandle is for port A
dwStatus = BCTOpen (&nInputHandle, &nPCIPIOBoardID, BCT_8255, 0, BCT_PORT_A);
// Check dwStatus returned

// nOutputHandle is for port B
dwStatus = BCTOpen (&nOutputHandle, &nPCIPIOBoardID, BCT_8255, 0, BCT_PORT_B);
// Check dwStatus returned

In Visual Basic (and VB.Net) we define the same function calls as:
* nInputHandle is for port A

dwStatus = BCTOpen (nInputHandle, nPCIPIOBoardID, BCT_8255, 0, BCT_PORT_A)
' Check dwStatus returned

\

nOutputHandle is for port B
dwStatus = BCTOpen (nOutputHandle, nPCIPIOBoardID, BCT_8255, 0, BCT_PORT_B)
' Check dwStatus returned

3.4.5 Using the ports

If all the initialisation detailed above has completed successfully we can use the handles to
input and output values to and from the PCI-PIO. In this example we are doing all the IO
directly from the application without using the pacer so we make calls to the functions
BCTReadPort and BCTWritePort. If we get a status return of BCT_IO_PENDING there is
already an IO operation pending on the port we specified and we use BCTWait to specify how
long to wait for this previous IO operation to complete.

// Variable to store result
BCT_BYTE nVal;
char *szErrTxt;

// To read a port..
dwStatus = BCTReadPort (&nInputHandle, &nVal);
if (dwStatus == BCT_IO_PENDING)
{
dwStatus = BCTWait (&nInputHandle, INFINITE);
}
if ((dwStatus != BCT_OK) && (dwStatus != BCT_IO_PENDING))
{
BCTErr2Txt (dwStatus, szErrTxt);
printf (“Status: %$s\n”, szErrTxt);
return (dwStatus) ;

}

// To write a port..

Blue Chip Technology Ltd. 01271033V3.doc Page 19

Using the Product

dwStatus = BCTWritePort (&nOutputHandle, 0x55);
if (dwStatus == BCT_IO_PENDING)
{
dwStatus = BCTWait (&nOutputHandle, INFINITE);
}
if ((dwStatus != BCT_OK) && (nStatus != BCT_IO_PENDING))
{
BCTErr2Txt (dwStatus, szErrTxt);
printf (“Status: %s\n”, szErrTxt);
return (dwStatus) ;

In Visual Basic (and VB.Net) we define the same variables and function calls as:

‘' Variable to store result
Dim nVal As Byte

Dim szErrTxt As String
szErrTxt = Space (120)

‘' To read a port..

dwStatus = BCTReadPort (nInputHandle, nVval)

If dwStatus = BCT_IO_PENDING Then
dwStatus = BCTWait (nInputHandle, INFINITE)

End If

If (dwStatus <> BCT_OK) And (dwStatus <> BCT_IO_PENDING) Then
Call BCTErr2Txt (dwStatus, szErrTxt)

End If

// To write a port..

dwStatus = BCTWritePort (nOutputHandle, 0x55)

If dwStatus = BCT_IO_PENDING Then
dwStatus = BCTWait (nOutputHandle, INFINITE)

End If

If (dwStatus <> BCT_OK) And (nStatus <> BCT_IO_PENDING) Then
Call BCTErr2Txt (dwStatus, szErrTxt)

End If

3.4.6 Closing all open handles

When the application is to be terminated we must close all open handles and release the board
id structure.

// Close the handles

dwStatus = BCTClose (&nInputHandle); // Check nStatus returned
dwStatus = BCTClose (&nOutputHandle); // Check nStatus returned
dwStatus = BCTReleaseBoardId (&nPCIPIOBoardId); // Check nStatus returned

In Visual Basic (and VB.Net) we define the same function calls as:

' Close the handles

dwStatus = BCTClose (nInputHandle) ' Check nStatus returned
dwStatus = BCTClose (nOutputHandle) ' Check nStatus returned
dwStatus = BCTReleaseBoardId (nPCIPIOBoardId) ' Check nStatus returned

When all the open handles have been closed and all board ID structures released it is safe to
terminate the application. If these close calls are not made the handles will remain allocated
and may result in strange behaviour of Windows.

Page 20 01271033V3.doc Blue Chip Technology Ltd.

Using the Product

3.5 ASYNCHRONOUS OPERATION

Many of the functions provided are asynchronous using the standard WIN32 OVERLAPPED
operations. This means that an operation could return with a status of BCT_IO_PENDING. If
this occurs then before using any functions that will access the same device it is imperative
that the application waits until the operation has finished. This can be achieved by using the
BCTWait function that allows a time from Oms to INFINITE to be specified for how long the
function will wait for the I/O to complete. If the operation is not complete it will again return
BCT_IO_PENDING. This permits the application to continue processing and periodically test
for whether I/O is complete OR to block and wait until the I/O is complete before proceeding
any further.

3.6 USING THE COUNTER TIMERS

The Counter Timers available on the PCI-PIO, PCI-RLY, PCI-DIO and PCI-ADC can be
used in a number of ways. They are always programmed to use 16-bit counters. The following
options are available:

1. When pacing (one of the timers free running to give a periodic interrupt), counters 0 and 1
are reserved to control the pacing functions. As one pacer can control functions on
devices on multiple boards, this would leave counter 0 and 1 free on any other available
boards in the system.

2. When pacing analogue input on the PCI-ADC, counter 2 is used. This must be counter 2
on the PCI-ADC board being used for analogue input (unlike the case with the generic
pacing clock).

3. A particular counter (if available) can be programmed to count external events. Most of
the counters allow 2 external pins to be connected and either of these can be used to clock
the relevant counter — see the BCTProgramCounter function.

4. Any of the counters can be read so long as the program has a valid handle for the relevant
device. In general this means that the pacing clocks cannot be read whilst they are being
used for pacing as these are owned by the library and not by the application. The counter
will have been started using BCTProgramCounter. As it is initially programmed with
Oxffff, counts down to O then wraps back to Oxffff, any use of the counter will have to
take account of the fact that the counter counts down. As the counters are 16-bit values
they are read using the BCTReadPort16 function.

Note: The counters do not actually load their starting value Oxffff until they receive the
first clock input, this means that any value read from the counter before it has started
counting returns an undefined value.

Blue Chip Technology Ltd. 01271033V3.doc Page 21

Using the Product

3.7 PACING

In order to support transfer of blocks of data under control of the Counter/Timers (8254s) on
the PCI-PIO, PCI-RLY, PCI-DIO and PCI-ADC boards, a number of pacer functions are
provided.

The following limitations will be placed on the hardware by the driver:

1. Clock 0 and 1 will always be cascaded together to give a total of 32bits for the counter
/ timer value

2. The input to this will always be the on board oscillator — 4MHz

3. The minimum time between I/Os is 1ms, and the maximum that is achievable with 32
Bits and a clock rate of 4MHz (approximately 17.89 minutes).

To use pacer input / output the following sequence of events needs to take place:
1. Acquire the pacer clocks

2. Specify the operation to be synchronised with the pacer clock, this step should be
repeated for as many operations as are required

3. Start the pacer operation, specifying the time between I/Os in milliseconds

4. At the end, stop pacer - this will complete all the outstanding operations tied to the
pacer and it will be necessary to return to step 1 in order to use the pacer to repeat the
operations required.

Each step must be carried out in sequence otherwise the routines will report an error
reflecting the missed step.

Some of the pacing functions support double buffering where it is possible to have the driver
reading from or writing to one buffer whilst the application is processing the other buffer. In
order to support this, ALL data buffers passed to the pacer functions contain not only the
actual buffer for the data but also a semaphore used to synchronise the use of the buffers.

These buffers, declared as type BCT_BUFFER, must be initialised and released using the
BCTAllocate and BCTRelease functions which are similar in use to the standard C “malloc”

and “free” functions.

If a buffer has been declared as follows:

BCT_BUFFER pBuf;

Then to access the actual data use

Page 22 01271033V3.doc Blue Chip Technology Ltd.

Using the Product

pBuf.Buffer, which is declared as an array of BCT_BYTE. To access the semaphore use
pBuf . Sema, which is declared as a 32-bit unsigned word (BCT_DWORD).

Note:

In VB.NET implementations, a dimensioned array, as used in BCT_BUFFER, cannot be
declared from within the structure. Instead, the 'MarshalAs Attribute' class is used to
handle each array data.

Furthermore, prior to using the buffer, vb.net requires the array to be initialised. One
method is to use the Redim statement e.g. ReDim pBuffer.Buffer(16383) - as shown in the
piotest example.

In use the semaphore should be initialised to zero before calling the driver. The driver will
use the first buffer, set its semaphore to non zero and switch to the other buffer. Each time the
driver switches buffers it will set the semaphore for that buffer to a non zero value.

An application program should test the semaphore and only process the buffer when it has a
non zero semaphore value and set the semaphore back to zero when it has finished processing
it.

The pacing functions allow a single Pacer clock to be used to trigger multiple events. Note
the following:

1. The driver will process each event in turn as the pacer interrupt occurs, the first to be
processed will be the first added to the event list. If there are too many operations added
to the pacer clock then it is possible that they will not be finished before the next pacer
interrupt occurs. If this happens then that pacer interrupt will be ignored however, the
currently active I/O will continue until the event list is completed.

2. The Pacer Clock does not need to be on the same board as the devices being paced.

3. Some of the functions are continuous, these will only be removed from the pacer queue
when their associated device is closed or the Pacer is released. Releasing the Pacer Clock
stops ALL of the activity paced on that clock, whereas closing the device only stops
pacing for that particular device.

To allow different operations on the same pacer to run at different rates, an additional
operation is supported where the number of Pacer interrupts to be ignored before carrying out
the operation can be specified. For example a value of 0 means carry out the operation on
every pacer interrupt. A value of 5 means ignore 5 pacer interrupts and carry out the operation
on every 6™ interrupt.

Paced input from analogue inputs on the PCI-ADC is handled slightly differently to that for
the other devices.

1. It uses only Counter/Timer 2

2. Only a single block of data can be captured (up to 4Gbytes in size)

Blue Chip Technology Ltd. 01271033V3.doc Page 23

Using the Product

3. Capture is either “as quick as possible — as in Software, Level Triggered or Paced —
driven by the output of Counter/Timer 2.

4. In the same way as the standard Pacer, if you are using a Counter/Timer it must be first
“Acquired” and then “Released”

Page 24 01271033V3.doc Blue Chip Technology Ltd.

Using the Product

3.8 USING DIGITAL INPUT AND OUTPUT
3.8.1 Ports Aand B

The 8255 devices on the PCI-PIO and PCI-ADC have three ports that can be configured for
input or output and in the case of port C the bits can be split between input and output.

Ports A and B are each configured as a single byte wide port with all bits either all as input or
all as output in 8255 mode 0 operation. This configuration must be done before calls are
made to write or read to the port using BCTInit8255Modes.

3.8.2 Split Port C

The 8255 devices on the PCI-PIO and the PCI-ADC have a Port C that can be programmed so
that the low 4 bits and high 4 bits are used for input or output independently. This is
controlled by the BCTInit8255Modes function, specifying ININ for 8 bit input, OUTOUT for
8 bit output and INOUT or OUTIN for split mode operation.

Apart from initial set up port C is used in the same way as the other two ports (A and B).
When using the Bit Setting function BCTWriteBit, this will reject attempts to write to a bit
set to input. When using any of the Input or Output functions, BCTWritePort, BCTReadPort
or BCTAddPacerBlocklo, these will read or write 8 bit values. If the Port is “split” then,

¢ On output all 8 bits will be written to Port C but only the appropriate half of the byte will
actually be placed on the output pins by the device

¢ On Input all 8 bits will be read from Port C, but only the appropriate half of the byte will
contain valid information, the other half is undefined and no assumption should be made
as to its contents.

So, although the Port can be split into two 4 bit halves all access to the port is made using 8-
bit values and care should be taken that the data of interest is in the correct half of the 8 bit
value read or written.

3.8.3 Isolated Digital Output

In the Windows NT device drivers for the PCI data acquisition cards, the isolated digital IO
on the PCI-DIO was configured using the function BCTInitlsoDigModes. In the WDM
drivers this has been replaced by a new function called BCTInitPCIDio. This requires only a
handle and a board index number, with this single handle used for 16bit input and output
using BCTReadPort16 and BCTWritePort16.

To initialize the PCI_RLY a new function called BCTInitPCIRelay that populates a BoardID
structure based on a board index number has been created. The boardID structure returned

Blue Chip Technology Ltd. 01271033V3.doc Page 25

Using the Product

from this function can be used to create a handle to either the input port or output port of a
PCI-RLY.

Due to the nature of the design of the PCI-DIO and PCI-RLY card there is a 2.4ms latency
between writing to the output buffer and the value appearing at the output pins. This is due to
the data written to the PCI-DIO and PCI-RLY output buffer having to be serially driven to
each output pin. Due to this limitation, if the outputs and inputs of the PCI-DIO or PCI-RLY
are looped together in order to monitor the status of the outputs then the application should
delay for at least 2.4ms between writing to the outputs and reading back the input value.

Further to this, if the isolated digital outputs on the PCI-DIO or PCI-RLY are set to be written
using a buffer of data under pacer control then the rate at which the pacer is set to output data
in this manner should be set to a value larger than 2.4ms. If the pacer is set to output new
values faster than 2.4ms then the data appearing at the output pins may be invalid. It is the
responsibility of the application programmer to ensure that the data that is being observed at
the output pins of the PCI-DIO and PCI-RLY is correct at all times.

3.9 WATCHDOG TIMER

The PCI_WDT board operates in a different manner to the other boards supported by the
driver. As with the other boards in the range, it is identified using a BCT_BOARD_ID and a
handle is obtained using the BCTOpen function. The main difference is that all the
functionality on the board is accessed as a single device.

This implementation does not support interrupts and the functionality is limited to:

® Reading and Writing the System Monitor Registers — see BCTSetWdt and BCTReadWdkt.
The data that can be written is defined in the BCT_WDT_SETDATA data structure, the data
that can be read is defined in the BCT_WDT_READDATA data structure, see data structure
definitions is appendix A.

e Control Operations on the Watchdog are all carried out using the BCTWatchdog function.
The Monitor chip on the PCI-WDT does not support fast access and so the BCTSetWdt and

BCTReadWdt routines will reject access less than 2 seconds apart. If you are monitoring
using a loop of some sort, ensure that the routines are called at more than 2 second intervals.

Page 26 01271033V3.doc Blue Chip Technology Ltd.

Driver API Functions

4.0 DRIVER API FUNCTIONS

In order to take the complexity of the Windows device driver interface away, the drivers are
supplied with an accompanying 32bit DLL which provides a number of library functions for
interfacing with the drivers. All of these functions return an error code as detailed in the
‘Error Codes’ section of this manual and these should be checked when calls to the library
have been made.

The behaviour of the DLL and driver is neither predictable nor supportable if error codes
returned from API routines are ignored.

The error codes are detailed in a later section of this manual however it is recommended that
the routine BCTErr2Txt() is used to translate error codes into their appropriate text forms in
order for them to be displayed on the screen.

4.1 Function Overview
The library contains functions, which can be divided into the following categories:

Management: BCTAcquireAPacer
BCTAllocate
BCTClose
BCTEnumerateBoards
BCTErm2Txt
BCTFindBoardNo
BCTFindSerialNo
BCTGetBoardld
BCTInitHandle
BCTlInitPacer
BCTOpen
BCTRelease
BCTReleaseAPacer
BCTReleaseBoardld
BCTWait

Digital Functions: BCTInit8255Modes
BCTInitlsoDigModes
BCTitPCIRelay
BCTlInitPciDio
BCTReadPort
BCT