PCI Utility Software

Please note this utility will only function in Full DOS mode, it will not work for instance in a DOS Window within Windows NT.

This disk contains the following files:

BC_PROBE.exe

BCPCILIB.h

BCPCILIB folder

BCPCI.exe

README.txt
Text file

README.doc
Word 7 file

This readme file contains the latest information on the utility software.

Background

When a PCI device is added to a PCI compliant PC, the BIOS assigns various resources to the device. It allocates an IRQ line, memory and base address(es) as required. This means that the user does not have any control over the location of the board within the machine’s memory map, unlike older ISA bus based systems. This presents a problem because the programmer does not know where the various facilities are located. Normally the operating system interface (e.g. Windows NT drivers) will isolate the programmer from this problem. However where software is required for other operating systems, the programmer must know where the devices have been placed in the map. Note that the location will vary from machine to machine, and BIOS to BIOS.

BC_PROBE.exe is a utility designed to present information to the screen about the various PCI devices and cards present in a system. This allows the programmer to identify and locate individual functions for simple systems which will not change. A library routine is also provided to be added to more complex applications. This provides for automatic relocation of the PCI device.

Using BC_PROBE

BC_PROBE is entered with a parameter. The parameter is separated from the filename by at least one space. The acceptable parameters are listed if entered with “?” as the parameter, thus:

BC_PROBE ?

This reports the software version number, followed by the parameters.

BC_PROBE P

This lists all the PCI devices in the system. For each device the following information is given:

Vendor ID (Vid)
Where this is a BCT board it is identified.

Device ID (Did)
A BCT card type is identified (e.g. PCI-ADC)

Bus Number

Device Number (Dev)

Function Number (Fn)

Assigned IRQ

Device Type

BCT cards are “Other”

Base Address Registers (Bar) used, their type (Memory or IO) and start address.

BC_PROBE I

For convenience of use BC_PROBE without a parameter also provides this function. This lists for each BCT PCI board present in the system:

Board type (e.g. PCI-PIO) and serial number

Vendor ID number

Device ID number

Bus number

Device number

Function number

Assigned IRQ

Base Address Registers and their start addresses.

This function provides all the information necessary to use the BCT PCI boards. This function is also provided as a library routine (BCPCILIB.lib). All BCT PCI boards start with the IO address listed at Bar2, and may use Bar3 and 4 depending on the complexity of the board.

BC_PROBE D

This lists the contents of the PCI Configuration Registers for each PCI device in the system. It is listed as “raw data” without further detail. Details about individual BCT cards (which are included in the list) can be obtained by using the “L” parameter.

BC_PROBE L

Provides detailed information on a card by card basis. The user is presented with a menu of the available BCT card types. Selecting a card will provide an interpretation of the PCI Configuration Registers and their contents. The second page of the display lists the contents of the Local Configuration Registers.

Due to an error in some revisions of the PCI bus interface silicon, this second page may return zero values for the register contents. If bit 7 of the base address for the IO or Memory mapped Configuration Registers (register offset 14h or 10h) is set to 1, the local configuration registers cannot be read. Under this condition, they will all return zeroes when the PCI master attempts to read them. The information contained in the registers will be correct, and they can be written to from both the PCI master and the EEPROM. If bit 7 is cleared to 0, the registers can be read correctly. In a PCI system the BIOS sets the base address during the initial configuration cycle, and it is this which determines whether or not bit 7 is set.

Normally this will not present a problem because the user only requires the information about the Base Address Registers (provided by BC_PROBE I). If it is essential to read the register contents of the registers, bit 7 must be cleared to zero. BC_PROBE L will then report the contents correctly.

Example:
The host has assigned a value of 0000FC81h to IO mapped local configuration register PCR 14h. Under these circumstances reading the local configuration registers will return zeroes. Using a utility (not provided) to change the setting to 0000FC01h will allow the registers to be read correctly. Rebooting the system will reset the address to its original value.

BCPCILIB Library File

The file BCPCILIB.lib contains two functions which provide a mechanism for passing board information to a calling procedure. The functions are BctBoardCount and BctBoardInfo, which are defined in the header file BCPCILIB.h

Note: The calling procedure must provide a buffer large enough to contain the returned information.

BctBoardCount()

This function should be called first. It will return a 2 byte value. The most significant byte will contain a value representing an error condition - a value of zero represents no error found. The supported error values are defined in the file BCPCILIB.h In the case of an error condition the lower byte will be zero.

If no error is detected, the lower byte will contain the total number of relevant boards (‘PIO’, ‘DIO’, ‘ADC’, and ‘WDT’) fitted. From this value the calling routine can allocate a buffer of adequate size in which the board information - obtained using the function BctBoardInfo - can be placed.

Note: the buffer must provide 72 bytes for each board.

BctBoardInfo(&buffer)

This function will return the relevant information about the BCT PCI boards to a calling procedure. The calling procedure must provide an argument containing the start address of a buffer. The buffer will be filled with ASCII representations of hex characters making up the information for each card, as follows:-

Vendor ID number

(4 ASCII hex characters)

Device ID number

(4)

Bus number

(2)

Device number

(2)

Function number

(2)

Assigned IRQ

(2)

Base Address Register 0 contents
(8)

Base Address Register 1 contents
(8)

Base Address Register 2 contents
(8)

Base Address Register 3 contents
(8)

Base Address Register 4 contents
(8)

Base Address Register 5 contents
(8)

Serial number

(8)

Total
72 bytes

The format of the information is such that the calling procedure may make use of the ANSI C library function ‘sscanf’ as shown in the example routine below. If more than one board is present, the information for subsequent boards will immediately follow the previous board’s information. The file BPCI.exe is a compiled version for DOS of BCPCI.c as an example.

/****

 **** BCPCILIB.H

 ****/

/**

BCT PCI Id's

 **/

#define BCT_VENDOR_ID

0x13c7

#define PCIPIO_DEVICE_ID
0x0b10

#define PCIDIO_DEVICE_ID
0x0D10

#define PCIADC_DEVICE_ID
0x0ADC

#define PCIWDT_DEVICE_ID
0x5744

/**

BCT card PCI Status function codes

 **/

#define BCT_NO_BCT_BOARDS

0x0000

#define BCT_NO_PCI_BIOS_PRESENT
0x0100

/**

Function prototypes

 **/

unsigned short

BctBoardCount();

int

BctBoardInfo();

/****

 **** BCPCI.C - Calling routine example

 ****/

#include <stdio.h>

#include <stdlib.h>

#include "bcpcilib.h"

char
version[] = "Version 1.00";

/**/

/*
main

 */

/**/

void main()

{

int
a, b, i;

char
buffer[360];
/* allow buffer space for 5 boards

72 bytes per board */

unsigned int

bufpointer;

unsigned short

vendid, devid;

unsigned char

bus, dev, func, irq;

unsigned long

bar0, bar1, bar2, bar3, bar4, bar5, sn;

/***

Demonstrate Library Function 'BctBoardCount()

 ***/

printf("
BCT PCI Board Search - %s\n\n\n", version);

printf("Searching for BCT PCI boards\n\n");

a = BctBoardCount();

if (a>255) {

printf("PCI Error condition exists - Unable to return Board Count\n\n");

switch (a>>8) {

case 1:
printf("No PCI BIOS present\n"); break;

default:
printf("Program Fault - Unknown error returned ");break;

}

exit(0);

}

else {

printf("Number of BCT PCI Boards detected = %x\n\n\n\n", a);

}

/***

Demonstrate Library Function 'BctBoardInfo()

 ***/

if (!a) {

printf("No BCT PCI boards were detected\n\n");

exit(0);

}

b = BctBoardInfo(&buffer);

bufpointer = 0;

for (i=1; i<=a; i++) {

sscanf(buffer+bufpointer,

 "%04x %4x %2x %2x %2x %2x %8lx %8lx %8lx %8lx %8lx %8lx %8lx",

&vendid, &devid, &bus, &dev, &func, &irq, &bar0, &bar1, &bar2,

&bar3, &bar4, &bar5, &sn);

/* each board has 72 bytes (72 ASCII characters) of information in the buffer */

bufpointer = 72*i;
/* set buffer pointer to next board's info */

printf("\nVid: Did: Bus Dev Fnc Irq S/N \n");

printf("%04x %04x %02x %02x %02x %02x %08lx Bar0 08lx\n",

vendid, devid, bus, dev, func, irq, sn, bar0);

printf(" Bar1 %08lx\n", bar1);

printf(" Bar2 %08lx\n", bar2);

printf(" Bar3 %08lx\n", bar3);

printf(" Bar4 %08lx\n", bar4);

printf(" Bar5 %08lx\n", bar5);

}

}

